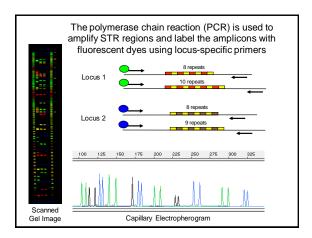


Outline

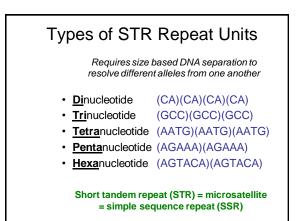
- Timeline of field and growth of STR use
- STR characteristics and biology
- STR core loci and commonly used kits
- Biology of STRs: Stutter, microvariants, null alleles
- Multiplex Kits

Country	Population size			ons		Stains			Match			
	_	A	S	CO	T			Person/S	Itain	Stain/Stain	Total	Da
A control of	8 100.000				145.527	44,831	8	CO	T 13.902	6.084	19.986	
Austria	8.100.000	<u> </u>		01.000			291	1.417			19.986	jun-
Belgium			n/a	21.886	21.886	24.624	291	1.417	1.708	2.872	4.580	jun
Bulgaria	7.900.000				17.618				377	122		juH
Croatia	4.600.000	-			29.293	5.180	_		3.752	1.519	5.271	feb
Cyprus	772.000											
Czech Republic	10.300.000		1.681	73.496	75.177	14.061 40.275			5.855	2.638	8.493 19.579	jun-
Denmark	5.500.000				73.908				19.579		19.579	50P
Estonia	1.400.000				29.274	9.376			2.860	895	3.755	jul
Finland	5.385.000				111.991	12.422			14.032	1.566	15.598	jun
France	59.300.000	118.637	1.345.274	352.853	1.698.127	103.792	34.496	11,198	45.694	6.734	52,428	jul-
Georgia Germany	4.700.000 81.835.000				711.159	184,782			86.422	23.841	110.263	iun
Switzerland Turkey UK (England & Wales)	7.779.000 66.800.000 53.700.000				126.663	33.109 387.563			28.997	7.034	36.031	jun-
Ukraine	47.600.000											-
Total	770,487,000				9.300.393	1.025.895			1.745.774	337.544	2.085.902	

Advantages for STR Markers

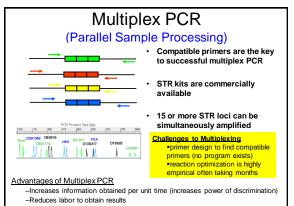

- Small product sizes are generally compatible with degraded DNA and PCR enables recovery of information from small amounts of material
- Multiplex amplification with fluorescence detection enables high power of discrimination in a single test
- · Commercially available in an easy to use kit format
- · Uniform set of core STR loci provide capability for national and international sharing of criminal DNA profiles

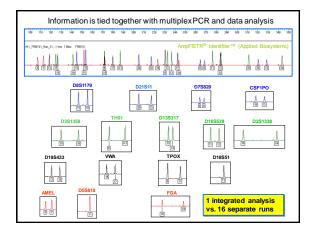
STR Biology

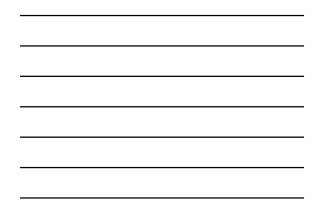

Short Tandem Repeat (STR) Markers

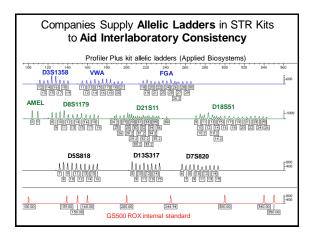
An accordion-like DNA sequence that occurs between genes TCCCAAGCTCTTCCTTCCCTAGATCAATACAGACAGAAGACA **GATAGATA**TCATTGAAAGACAAAACAGAGATGGATGATAGATACA TGCT<u>TACAGATGCACAC</u>

- = 12 GATA repeats ("12" is all that is reported)
- → 7 repeats → 8 repeats
- → 9 repeats +
- The number of consecutive repeat → 10 repeats + units can vary between people → 11 repeats
- 12 repeats + → 13 repeats
 - Target region (short tandem repeat)

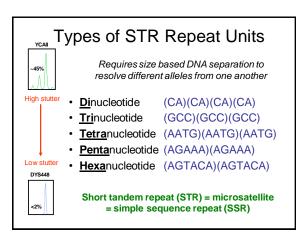

Category	Example Repeat Structure	13 CODIS Loci
Simple repeats – contain units of identical length and sequence	(GATA)(GATA)(GATA)	TPOX, CSF1PO, D5S818, D13S317, D16S539
Simple repeats with non-consensus alleles (e.g., TH01 9.3)	(GATA)(GAT-)(GATA)	TH01, D18S51, D7S820
Compound repeats – comprise two or more adjacent simple repeats	(GATA)(GATA)(GACA)	VWA, FGA, D3S1358, D8S1179
Complex repeats – contain several repeat blocks of variable unit length	(GATA)(GACA)(CA)(CATA)	D21S11




- knowledge regarding the human genome, and hence there are many more STR loci available now than there were 10 years ago when the 13 CODIS core loci were selected.
- More than 20,000 tetranucleotide STR loci have been characterized in the human genome (Collins et al. An exhaustive DNA micro-satellite map of the human genome using high performance computing. Genomics 2003;82:10-19)
- There may be more than a million STR loci present depending on how they are counted (Elegren H. Mcrosstellites: simple sequences with complex evolution. Nature Rev Genet 2004;5:435-445).
- STR sequences account for approximately 3% of the total human genome (Lander et al. Initial sequencing and analysis of the human genome. Nature 2001;409:860-921).

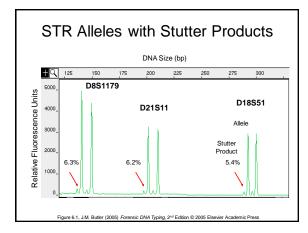

Butler, J.M. (2006) Genetics and genomics of core STR loci used in human identity testing. J. Forensic Sci., 51(2): 253-265

-Reduces template required (smaller sample consumed)

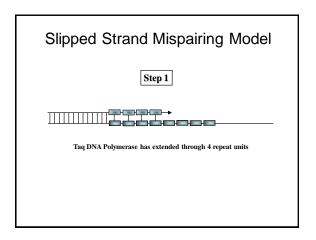


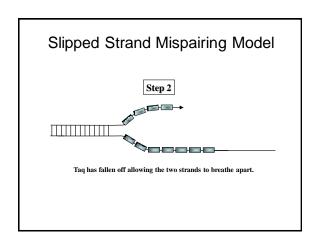
Biological "Artifacts" of STR Markers

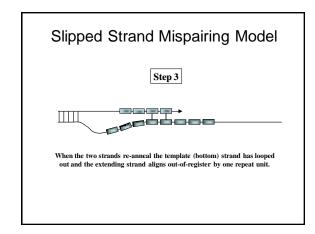
- · Stutter Products
- Non-template nucleotide addition
- Microvariants
- · Tri-allelic patterns
- Null alleles
- Mutations

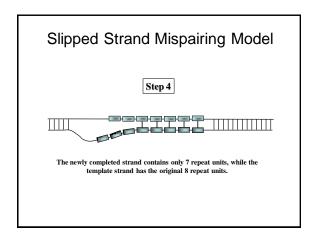

Stutter Products

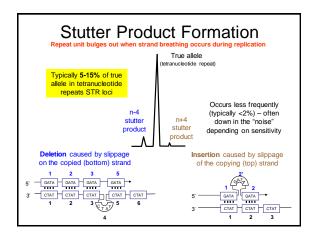
- Peaks that show up primarily one repeat less than the true allele
 as a result of strand slippage during DNA synthesis
- Stutter is less pronounced with larger repeat unit sizes (dinucleotides > tri- > tetra- > penta-)

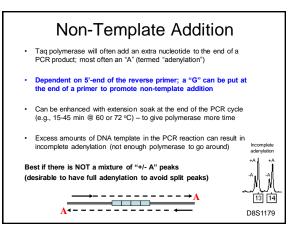


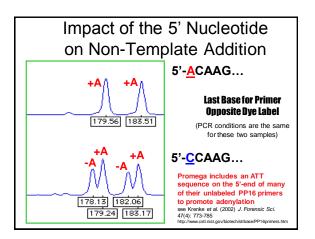


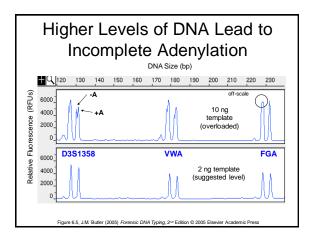

- Peaks that show up primarily one repeat less than the true allele as a result of strand slippage during DNA synthesis
- Stutter is less pronounced with larger repeat unit sizes (dinucleotides > tri- > tetra- > penta-)
- · Longer repeat regions generate more stutter
- Each successive stutter product is less intense (allele > repeat-1 > repeat-2)
- Stutter peaks make mixture analysis more difficult



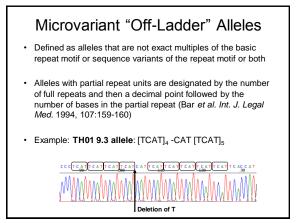


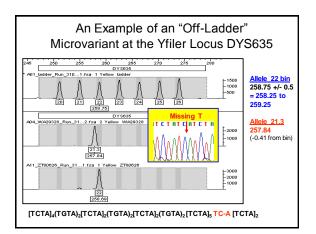


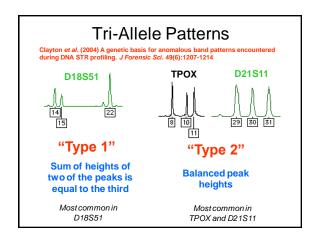


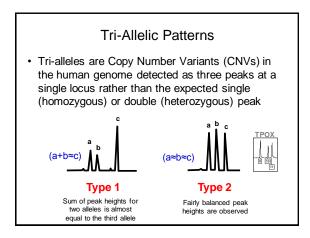


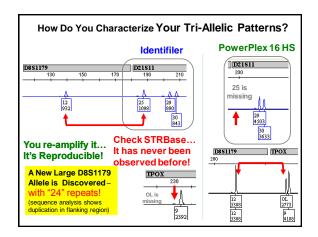




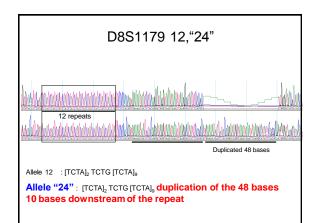




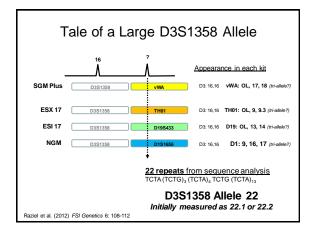


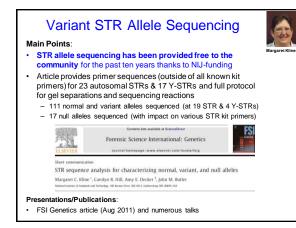


Slide from Steven Myers, CA DOJ Data from Missouri Highway Patrol DNA Frequency of Tri-Allelic Patterns					
	Locus	Observations	1 in		
 Database Size: 	D3S1358	2	35,000		
	VWA	10	6,900		
69,000	FGA	11	6,300		
	D8S1179	2	35,000		
 Overall Average 	D21S11	9	7,700		
Occurrence:	D18S51	3	23,000		
	D5S818	1	69,000		
1 in 1,000	D13S317	4	17,000		
	D7S820	0			
Note:	D16S539	3	23,000		
This is Steven's	TH01	0			
summary of Missouri's data.	TPOX	9	7,700		
This table is not on	CSF1PO	1	69,000		
STRBase.	Penta D	3	23,000		
	Penta E	10	6,900		
	Combined	68	1,000		



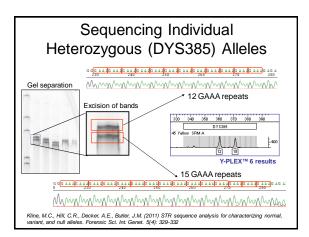
D004470	Allele	Promega	ABI	Repeat Structure	Reference
D8S1179	(Repeat #)	PowerPlex 16	Identifiler	[TCTR]n	
All Previously	6	199 bp	119 bp _	Not published	STRBase
Known Alleles	7	203 bp	123 bp	[TCTA] ₇	Griffiths et al. (1998)
Known Alleles	8	207 bp	127 op	[TCTA] ₈	Barber and Parkin (1996)
	9	211 bp	131 bp	[TCTA] ₉	Barber and Parkin (1996)
	10	215 bp	135 bp	[TCTA]10	Barber and Parkin (1996)
	10.1	216 bp	136 bp	Not published	STRBase
	10.2	217 op	137 bp	Not published	STRBase
	11	219 bp	139 bp	[TCTA]11	Barber and Parkin (1996)
	12	223 bp	143 bp	[TCTA]12	Barber and Parkin (1996)
	12.1	224 bp	144 bp	Not published	STRBase
Many alleles	12.2	225 bp	145 bp	Not published	STRBase
	12.3	226 bp	146 bp	Not published	STRBase
sequences	13 (a)	227 bp	147 bp	ITCTALITCTGI.ITCTAL	Barber and Parkin (1996)
are not	13 (b)	227 bp	147 bp	[TCTA] ₂ [TCTG] ₁ [TCTA] ₁₀	Kline et al. (2010)
	13 (c)	227 bp	147 bp	[TCTA] ₁ [TCTG] ₁ TGTA[TCTA] ₁₀	Kline et al. (2010)
known	13 (d)	227 bp	147 bp	[TCTA] ₁₃	Kline et al. (2010)
	13.1	228 bp	148 bp	Not published	STRBase
	13.2	229 bp	149 bp	Not published	STRBase
	13.3	230 bp	150 bp	Not published	STRBase
	14	231 bp	151 bp	[TCTA]2[TCTG]1[TCTA]11	Barber and Parkin (1996)
	14.1	232 bp	152 bp	Not published	STRBase
We just set the	14.2 15	233 bp	153 bp	Not published	STRBase
		235 bp 236 bp	155 bp 156 bp	[TCTA] ₂ [TCTG],[TCTA] ₁₂ Not published	Barber and Parkin (1996) STRBase
new world record	15.1	236 DP 237 bp	156 bp 157 bp	Not published	STRBase
for the largest D	8 15.3	238 bp	158 bp	Not published	STRBase
	15.5	239 bp	159 bp	TCTA]2[TCTG]1[TCTA]13	Barber and Parkin (1996)
allele (24)	16.1	239 bp	160 bp	Not published	STRBase
()	17	240 bp 243 bp	163 bp	TCTA]2[TCTG]2[TCTA]13	Barber and Parkin (1996)
•	17.1	243 bp	163 bp	Not published	STRBase
	17.2	244 bp	165 bp	Not published	STRBase
	18	245 bp	167 bp	TCTA]2[TCTG]1[TCTA]15	Barber and Parkin (1996)
	19	251 bp	171 bp	TCTAb[TCTG]	Griffiths et al. (1998)
	20	255 bp	175 bp	Not published	STRBase

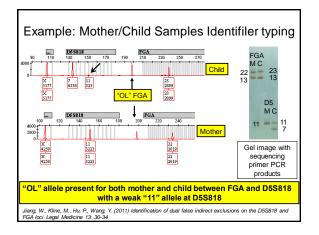




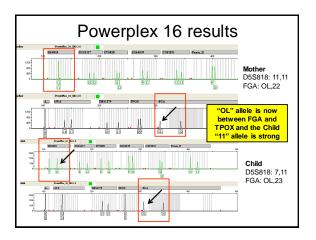
Recommendations for Tri-Allelic Patterns

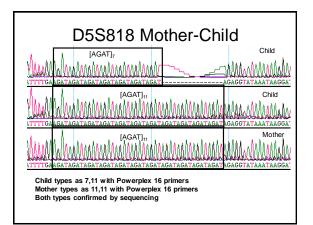
- Re-injecting a sample with the same STR kit does not help answer the question
- Run a different STR kit with loci in different configurations
- This duplicate testing will help confirm that you have a true tri-allele rather than an extremely small or large allele that is out of the STR kit defined allele bins for a locus
- Recording tri-allelic patterns correctly improves database searching comparability when states are using different STR kits

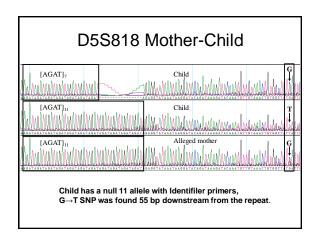


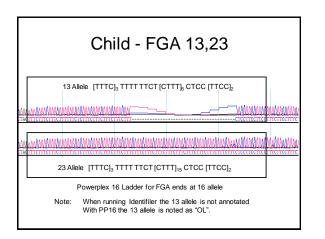

Sequencing Variant Alleles

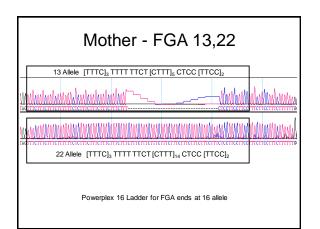
- "Off-ladder" variants, null alleles, or any other "odd" result seen in datasets
- Sample sequencing free of charge – NIJ funds this work
 - 10 ng genomic DNA sample requirement with an electropherogram of the result and specified marker in question
- Results provided to customer and listed on STRBase:

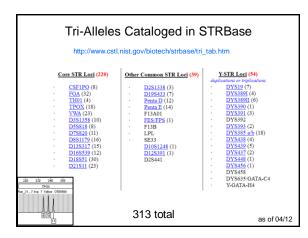

http://www.cstl.nist.gov/biotech/strbase/STRseq.htm

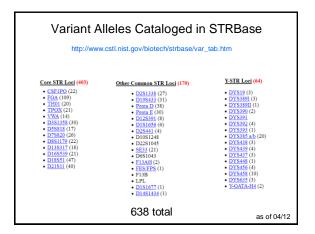


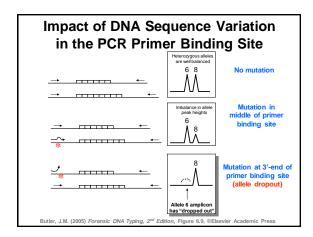


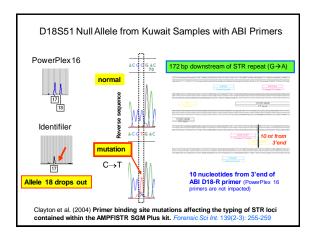




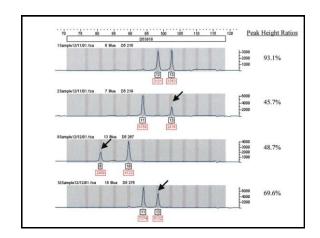


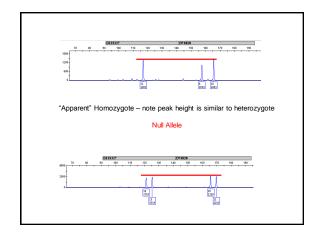




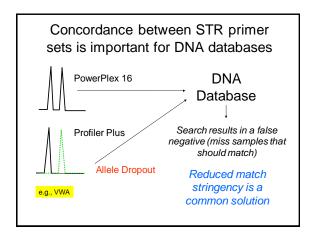

Null Alleles

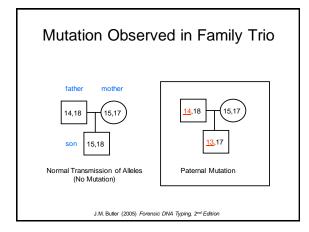
- Allele is present in the DNA sample but <u>fails to be</u>
 <u>amplified</u> due to a nucleotide change in a primer
 <u>binding site</u>
- Allele dropout is a problem because a heterozygous sample appears falsely as a homozygote
- Two PCR primer sets can yield different results on samples originating from the same source
- This phenomenon impacts DNA databases
- Large concordance studies are typically performed prior to use of new STR kits

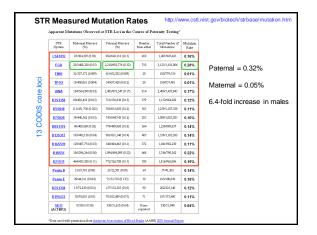

For more information, see J.M. Butler (2005) Forensic DNA Typing, 2nd Edition, pp. 133-138











Summary of STR Mutations

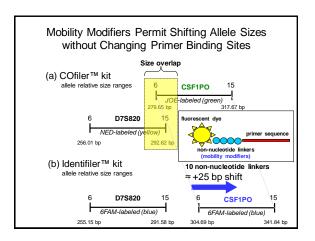
Mutations impact paternity testing and missing persons investigations but not forensic direct evidence-suspect matches...

- · Mutations happen and need to be considered
- · Usually 1 in ~1000 meioses
- · Paternal normally higher than maternal
- VWA, FGA, and D18S51 have highest levels
- TH01, TPOX, and D16S539 have lowest levels

Value of STR Kits

Advantages

- Quality control of materials is in the hands of the manufacturer (saves time for the end-user)
- Improves consistency in results across laboratories same allelic ladders used
- Common loci and PCR conditions used aids DNA databasing efforts
- Simpler for the user to obtain results

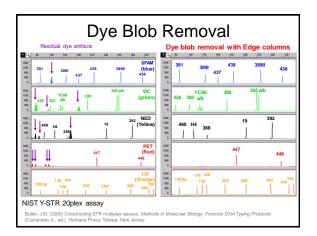

Disadvantages

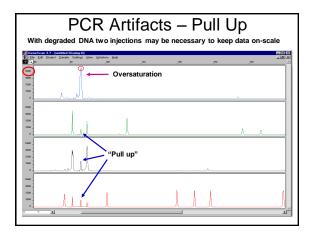
- Contents may not be completely known to the user (e.g., primer sequences)
- Higher cost to obtain results

What is Being Measured with STR Alleles during CE Separation

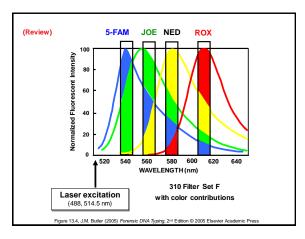
- Mobility of a PCR product with a fluorescent tag is being measured
- Mobility is the time it takes for the DNA molecule to
 move from the injection point to the detection point
- Mobility modifiers are used in some ABI STR kits
 Identifiler has five loci with mobility modifiers

To Avoid Overlapping PCR Product Size Ranges with STR Loci in the Same Dye Channel

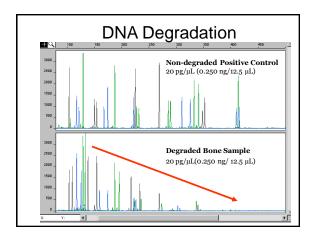

- Applied Biosystems Strategy
 - Maintains primer sequences (except MiniFiler & NGM kits)
 Utilizes mobility modifiers or additional dyes, no primer redesign is necessary
 - Enables comparison to legacy data with earlier kits but null alleles may go undetected with the potential for incorrect genotypes within data sets
- Promega Corporation Strategy
 - Moves primer sequences to change PCR product size ranges
 Primer redesign can be difficult, but can be moved from primerbinding-site mutations
 - Requires concordance studies to check for potential allele dropout


Forensic DNA Issues

- Dye Blobs
- Pull up
- · Degraded DNA
- PCR Inhibition
- Contamination
- · Mixed samples


Primer Synthesis and Dye Blobs

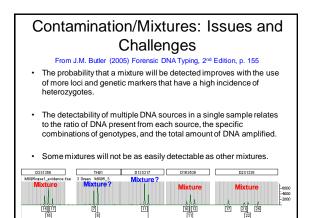
- Oligonucleotide primers are synthesized from a 3'-to-5' direction on solid-phase supports using phosphoramidite chemistry
- The fluorescent dye is attached at 5'end of the primer (it is the last component added)
- The coupling reaction at each step of primer synthesis is not 100%, which can lead to some minor level impurities
- Left-over dye molecules that are not removed by postsynthesis purification can be carried through the PCR amplification step and injected onto the capillary to produce "dye blobs" or "dye artifacts" in CE electropherograms (wider than true allele peaks)

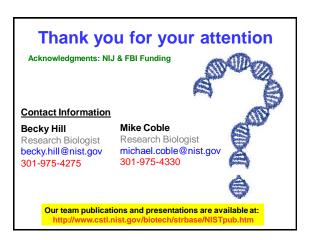


Degradation and PCR Inhibition

- Degradation affects larger alleles more, however there is no published study on the "threshold at which degradation is apparent"
- The amplification efficiency of each set of alleles varies independently and differential amplification across loci can occur – Moretti, JFS 2001
- Low quality formamide can mimic the degradation effect
- Inhibition generally affects certain loci more than others and may or may not produce a slope effect- McCord, unpublished
- There are several likely mechanisms for inhibition including DNA aggregation, Protein-DNA binding, chelation of Mg, interference with primer binding, etc.

Degraded and inhibited bone sample
" the she with a function of the second seco
Loss of larger alleles due to degradation
differential amplification at certain loci (inhibition?)
The Second state of the se


Non-DNA Contamination/Inhibition


- Anything that is water soluble may co-extract with DNA unless a capture technique is used.
- For capture techniques anything with a similar chemical property to DNA may co-extract
- Detergents, metal ions, humic substances are all potent contaminant/inhibitors
- Can cause all sorts of strange effects including

 Spikes, dye blobs, elevated baselines, loss of signal, odd current effects

Inhibition vs. Degradation

- Will often give a similar profile.
- If a sample is inhibited diluting the sample can often increase PCR amplification success.
- For a degraded sample, potentially use miniSTRs or LCN.

http://www.cstl.nist.gov/strbase/training/Copenhagen2012-STR-Workshop.htm